
UCF-System:Activity Detection in Untrimmed Videos

Ishan Dave
⇤
, Zacchaeus Scheffer

⇤
, Praveen Tirupattur

⇤
, Yogesh Rawat

†
, Mubarak Shah

†

Center for Research in Computer Vision
University of Central Florida, Orlando, Florida

⇤{ishandave,zaccy,praveentirupattur}@knights.ucf.edu,†{yogesh, shah}@crcv.ucf.edu

1 Method

1.1 Overview

Figure 1: Overview of the proposed system for action detection in untrimmed videos. An untrimmed
video is processed clip by clip and fed into the localization network, producing localization masks.
Tubelet extraction produces tubelets for each clip, which are then classified and passed to our TMAS
system. The classified tubelets are merged to create action-agnostic tubes, from which individual
action-specific detections are obtained.

The proposed system takes in a video clip as input and detects all activities in the form of tubelets.
The system first operates on entire clip to spatio-temporally localize action tubelets. Once we extract
potential tubelets, our classification system identifies all possible activities occurring within each
tubelet. These action predictions are then fed into our TMAS system, which simultaneously filters and
combines them into accurate and consistent action tubes. As an end result, we obtain spatio-temporal
action detections over long untrimmed videos in an online real-time process. The following sections
describe the different components of our system.

1.2 Localization Network

The tube extraction process is the first step in the pipeline, responsible for extracting all action tubes
from the untrimmed video input. Localizing action regions both temporally and spatially is vital for
the classification task as the length and location of action is unknown beforehand. Furthermore, each
action tube could comprise of multiple actors performing multiple actions concurrently. This requires
actor and action agnostic tube extraction.

As shown in Figure 1, first we divide the untrimmed videos into smaller clips, which are then
forwarded into the localization network. Following an encoder-decoder approach, the network
produces segmentation masks for action regions, each of which represents an action tubelet. These
tubelets are then individually processed by subsequent components of our system. Since this bottom-
up segmentation is performed for multiple frames simultaneously, we reduce the time taken to localize
multiple actions within a video clip.

The proposed localization network uses an encoder-decoder structure, and extracts class-agnostic
action features which can be used to generate segmentation masks; this requires an effective feature
extractor as an encoder. To this end, we utilize a 3D convolution based encoder, I3D [2], to learn
spatio-temporal features required for activity localization.

In the decoder, we use extracted action features to segment regions from the original input which
contain activities. Depending on the task, this segmentation can be coarse (patches of regions) to
fine grained (pixel level). We opt to produce relatively fine grained segmentations, keeping a balance
between separable action tubes and a reasonable memory utilization. Following recent works in image
segmentation [3, 4, 9] and video segmentation [5, 7], we use a decoder structure which combines
transpose convolutions and upsampling. Stacking many transpose convolution layers is memory
intensive and adds many parameters to the decoder, so we interleave upsampling operations to
interpolate features. This results in a shallow decoder network, which prevents over-parameterization
and avoids overfitting. Further architectural details of the localization network are presented in the
supplementary materials.

Skip Connections: It is difficult to produce fine grained pixel level segmentations using features
which have been spatially down-sampled by the encoder. To obtain these fine grained segmentations
one would need a deep, memory intensive decoder. To circumvent this we pass low level features
from various layers of encoder directly to corresponding layers of the decoder network, which has
been found effective for image segmentation [9, 4]. This allows the decoder network to reincorporate
essential features that were lost during encoding process, which results in improved pixel level
segmentations.

Feature Pyramids: The objects present in surveillance videos have varying scale. Therefore, using
information from layers with different feature resolutions helps in segmenting objects of different
sizes. The authors in [4, 9] have recently shown that building feature pyramids from various layers,
at different scales, aids in learning contextual information. Motivated by this, we stack features from
various decoder layers (through upsampling) to obtain feature representations at different scales.

Atrous Convolution: Having contextual information for each pixel aids in the process of learning
richer features for fine grained segmentation. Since conventional convolutions have a limited receptive
field, they are unable to learn this contextual information without incurring a heavy memory overhead.
To address this, we apply atrous convolution, with different receptive windows, on our final feature
representation. Atrous convolution applies a convolution operation with dilated kernels centered
around a pixel, which effectively increases the receptive field. We apply dilation at multiple rates
to infer contextual relations among pixels with varying distances. The authors in [4] utilize atrous
convolution for encoder-decoder based segmentation and observed improved performance.

Multi Layer Loss: The final output of our localization network is a segmentation mask where each
pixel is assigned a probability of being a part of an action. To train the network, we compute a Binary
Cross Entropy (BCE) loss, where each pixel can have a probability between zero (no activity) and one
(activity). As our network is deep, only calculating the loss at the final layer affects the convergence
time and the gradient update values for earlier layers. Hence, we apply the segmentation loss at
multiple decoder layers, which improves the features learned in multiple layers and allows for more
distributed backpropagation.

For a layer m with N total pixels, the loss is given as:

Lm(ŷ, y) = �1N
NX

i=0

[yilog(ŷi) + (1� yi)log(1� ŷi)] (1)

where ŷi are predicted probability score of the pixel belonging to an activity and yi are the ground
truth labels of the pixels.

2

The combined loss for all M layers in the multi layer loss is given by:

Lloc =
MX

m=1

Lm (2)

Tubelet Extraction: The segmentation output for each clip is a probability mask which isolates
potential action tubes. To obtain individual tubelets from this segmentation output, we threshold the
output to create a binary mask followed by spatio-temporal connected component extraction. The
connected component process will generate tubelets for all spatially and temporally linked pixels.

1.3 Tubelet Classification

The next step in our proposed system is tubelet classification. Our action classification network is a
multi-label prediction network, which classifies the actions present within each tubelet. We treat this
as a multi-label classification problem because actors can perform multiple activities simultaneously.
For example, an actor can perform the actions Riding and activity_carrying at the same time. We use
a 3D-Convolution based deep learning model [6] initialized with pre-trained weights on Kinetics [8]
dataset for action classification. We modify the final layer of the model to have a C + 1 dimensional
output, where C is the number of action classes and the additional output is for the background class.
A sigmoid activation is used in the final layer in place of a softmax as this is a multi-label classifier.
We use BCE loss to train the classifier which is defined as,

Lcls(ŷ, y) = �1C + 1
CX

i=0

[yilog(ŷi) + (1� yi)log(1� ŷi)] (3)

where ŷi is the prediction and yi is the ground truth label.

1.4 TMAS Algorithm

To merge the tubelets and obtain the final action tubes, we propose the Tubelet-Merge Action-Split
algorithm (TMAS). Each tubelet ti is described as follows:

�
f i
1, f

i
2, b

i, a
i
c

�
where f i

1 is the start time,
f i
2 is the end time, b

i are the bounding boxes for each frame of the tubelet, and a
i
c are the frame-level

action probability scores for each action class c 2 {0, 1, ...C}, where 0 is background. First, we
merge the tubelets into action-agnostic tubes of varying length; then we split these action-agnostic
tubes into a set of action-specific tubes which contain the spatio-temporal localizations for the various
activities in the video.

Tubelet-Merge The procedure to merge tubelets into action-agnostic tubes is described in Algo-
rithm 1. The temporally sequential stream of tubelets coming from the classification network are
passed to the Tubelet-Merge procedure as input. The set of candidate tubes is initialized with the first
tubelet. For each subsequent tubelet, we look for spatio-temporal overlap with the existing candidate
tubes. This results in four possible outcomes: 1) If there is no overlap, the tubelet itself becomes a
new candidate tube, 2) If there is a unique match found between a candidate tube and the tubelet,
they are merged and become a new candidate tube, 3) if the tublet has an overlap with multiple
candidates, then the tubelet becomes a new candidate, 4) if multiple tublets have an overlap with a
single candidate tube, then the tubelet with the highest overlap is merged with that candidate and the
other tubelets become separate candidate tubes. Once all tubelets are checked, the candidate tubes
become the final action-agnostic tubes.

Action-Split From the action-agnostic tubes we obtain action-specific spatio-temporal localizations
using the Action-Split procedure described in Algorithm 2. We start by smoothing out per-frame
action confidence scores; which accounts for fragmentation caused by action miss-classifications.
Then we build the action-specific tubes by checking for continuous occurrences of each action class;
this allows several occurrences of the same activity to occur within a single tube. For instance, a
person walking might stop and stand for several seconds and start walking again; this entire sequence
will be contained in a single spatio-temporal tube, but the Action-Split procedure will correctly
generate two separate instances of activity_walking and one instance of activity_standing. To be
robust to classification errors, action tubes with the same action label that are within a limited temporal
neighborhood are combined together to form a single continuous action prediction.

3

Algorithm 1 The Tubelet-Merge algorithm which merges tubelets into action-agnostic tubes. The
CHECKEND function determines if a candidate tube becomes a final tube or is merged with another
candidate.

Input: A stream of tubelets, S, from the classifier
Output: A set of action-agnostic spatio-temporal tubes, Tdone

Notation: Intertemp calculates temporal overlap between tubelets.
|M[(tc, ⇤)]| returns the cardinality of the set {t : M[(tc, t)] > 0}.

1: procedure TUBELET-MERGE(S)
2: Tprev, Tdone {} . Initialize candidate and final tubes
3: M initializehashtable
4: while tcinS do . Continue until the stream of tubelets ends
5: for all tpinTprev do

6: if Intertemp(tp, tc) > 0 then

7: M[(tp, tc)] IoU(tp, tc)
8: else

9: CHECKEND(tp, Tprev , M)
10: append tc to Tprev . Tubelet becomes a candidate tube
11: while Tprevisnotempty do . Deals with remaining candidates
12: tp Tprev[0]
13: CHECKEND(tp, Tprev , M)
14: return Tdone

1: function CHECKEND(tp, Tprev,M)
2: if |M[(tp, ⇤)]| == 0 then

3: MOVE(tp, Tprev , Tdone) . Moves tp from Tprev to Tdone

4: else if |M[(tp, ⇤)]| == 1 then

5: ti maxti M[(tp, ti)]
6: if |M[(⇤, ti)]| == 1 then

7: MERGE(tp, ti, Tprev , M)
8: else

9: MOVE(tp, Tprev , Tdone)
10: else

11: ti maxti M[(tp, ti)]
12: MERGE(tp, ti, Tprev , M)
1: function MERGE(t1, t2, Tprev,M) . Merges two candidate tubes
2: t1 (f1

1 , f
2
2 , {b

1, b
2}, {a

1, a
2}) . {} is concatenation

3: removet2fromTprev

4: M[t1, ti] M[t2, ti] . DoneforalltiwhereM[t2, ti] � 0

Runtime Complexity The worst-case runtime of our TMAS algorithm is O
�
n2

�
, where n is the

total number of candidate tubes at any given time. However, we sequentially process our tubelets and
constantly shift the candidate tubes which can not have any possible future match to the set of final
tubes. Therefore, the set of candidate tubes at any particular time is reasonably small and our TMAS
algorithm contributes negligible overhead to our system’s overall computation time.

2 Experiments

2.1 Implementation Details

We use I3D backbone for the action localization and Wide-ResNet-50 model for the tubelet classifi-
cation. For the training networks, we use Adam Optimizer with a base learning rate of 1e-3 and a
learning rate scheduler which drops the learning rate to 1/10th of its value at the loss plateau.

2.2 Results

We train our pipeline on the VIRAT dataset with training set of TRECVID 2020 [1] split. The
comparison with the other methods are shown in Table 1, which is reported on the TRECVID ActEV
2020 Evaluation leaderboard.

4

Algorithm 2 The Action-Split algorithm which converts the action-agnostic tubes into action-specific
predictions.

Input: A set of action-agnostic tubes, T , and a set of actions, C
Output: A set of spatio-temporal action-specific tubes, AG

Notation: The hyperparameters ⌧,↵,�, and� are described in the
supplementary materials. ai

c[f] and ti[f] contain the action prediction scores and tube information at
frame f , respectively.
1: procedure ACTION-SPLIT(T)
2: AG {} . Initializes the action-specific tubes
3: for all tiinT do

4: tsmooth SMOOTH(ti)
5: for all cin1 : C do . Loop through each action class
6: aL EXTRACT (tsmooth, c)
7: appendaLtoAG

8: return AG

1: function SMOOTH(ti)
2: for all finf i

1 : f i
2 do

3: ai
c [f] 1

2⌧+1

P⌧
k=�⌧ a

i
c [f + k]

4: return ti
1: function EXTRACT(ti, c) . Extracts tubes of a specific class
2: AL, al {} . Initialize extracted action tubes and a placeholder
3: count 0
4: for all finf i

1 : f i
2 do

5: if ai
c[f] > ↵ then . Continue current action tube

6: appendti[f]toal

7: count 0
8: else

9: count count+ 1
10: if count > � then . Current action tube is finished
11: appendaltoAL

12: al {}, count 0

13: removetubesshorterthan�fromAL

14: return AL

Rank Team name System name Partial
AUDC*

mean-p_
miss@0.15tfa

mean-w_p_
miss@0.15rfa

1 INF INF 0.42307 0.33241 0.80965
2 BUPT-MCPRL MCPRL_S1 0.55515 0.48779 0.84519
3 UCF UCF-P 0.58485 0.5473 0.8354

4 TokyoTech_AIST TTA-SF2 0.79753 0.75502 0.87889
5 CERTH-ITI P 0.86576 0.84454 0.88237
6 Team UEC UEC 0.95168 0.95329 0.983

7 kindai_kobe kindai_ogu
_baseline 0.9682 0.96443 0.95665

Table 1: Comparison of methods tested on NIST TRECVID-2020 evaluation set

5

Acknowledgements

This research is based upon work supported by the Office of the Director of National Intelligence
(ODNI), Intelligence Advanced Research Projects Activity (IARPA), via IARPA R&D Contract
No. D17PC00345. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of the ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon.

References

[1] George Awad, Asad A. Butt, Keith Curtis, Yooyoung Lee, Jonathan Fiscus, Afzal Godil, Andrew Delgado,
Jesse Zhang, Eliot Godard, Lukas Diduch, Jeffrey Liu, Alan F. Smeaton, Yvette Graham, Gareth J. F. Jones,
Wessel Kraaij, and Georges Quénot. Trecvid 2020: comprehensive campaign for evaluating video retrieval
tasks across multiple application domains. In Proceedings of TRECVID 2020. NIST, USA, 2020.

[2] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset.
In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6299–6308,
2017.

[3] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous convolution
for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017.

[4] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-decoder
with atrous separable convolution for semantic image segmentation. In Proceedings of the European
conference on computer vision (ECCV), pages 801–818, 2018.

[5] Kevin Duarte, Yogesh Rawat, and Mubarak Shah. Videocapsulenet: A simplified network for action
detection. In Advances in Neural Information Processing Systems, pages 7610–7619, 2018.

[6] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3d cnns retrace the history of 2d
cnns and imagenet? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[7] Rui Hou, Chen Chen, and Mubarak Shah. An end-to-end 3d convolutional neural network for action
detection and segmentation in videos. arXiv preprint arXiv:1712.01111, 2017.

[8] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio
Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action video dataset. arXiv preprint
arXiv:1705.06950, 2017.

[9] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollár. Panoptic feature pyramid networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6399–6408, 2019.

6

